Antiproton Working Group Summary

David Christian, Fermilab (written contribution coauthored by Mark Mandelkern, UCI)

December 16, 2004

Context - 1

- The antiproton source is fully employed, and is likely to remain fully employed as long as the Tevatron Collider is running.
- Antiproton source performance will not be dramatically changed by proton driver.
 - Proton Driver = x2 in pbar stacking rate (smaller than improvement still planned for Run II).

Context - 2

- The antiproton source is nearly unique in the world.
 - CERN AD is the only currently running program (3 experiments with stopping pbars)
 - Antiprotons play a central role in the planned GSI upgrade (FAIR = Facility for Antiproton and Ion Research).

Topics Considered

- Quarkonium formation experiments.
- $\bar{p}p \rightarrow \bar{\Lambda}\Lambda$ (search for CP violation).
- Light hadron spectroscopy.
- Experiments with stopping 5.
- Debuncher ring as a prototype v-factory.

Quarkonium Formation

- Advantages of p

 p

 p

 over e

 e

 :
 - All quantum numbers are directly accessible (not just 1⁻⁻).
 - No synchrotron radiation → very small beam energy spread is possible (w/cooling) → best possible heavy quarkonium mass and width measurements.

Charmonium

Goals:

- $-h_{\rm c}$ confirmation, $\eta_{\rm c}$ mass discrepancy, widths of both.
- Other expected narrow states identified and characterized
 - 1¹D₂, 1³D₂, 1³D₃, 2³P₂, 1¹F₄.
- Could be done in the Accumulator with a gas jet target (like E760, 835)
- Part of the program planned for GSI.

Bottomonium

- Many states are not yet observed
 - Singlet 1S, 2S, 1P, and 2P.
 - D states.
- P state widths not yet measured.
- Feasibility of experiment depends on production cross section.
 - Not yet known; calculable given bottomonium branching ratio to pp.
 - CLEO has enough data to measure the brancing ratio or prove it too low.

Bottomonium, continued

- Experiment makes sense if branching fraction to p

 is ~10⁻⁴, and luminosity of ~10³² cm⁻¹sec⁻¹ is possible.
- Gas jet experiment would require a new ~50 GeV ring & luminosity would be hard to achieve.
- Very high intensity ~5x5 pp colliding beam machine might be possible in the Booster tunnel!
- The CLEO III detector might be perfect and might be available!

CP Violation in hyperon decays

- P859 (1992) proposed $\bar{p}p \rightarrow \bar{\Lambda}\Lambda$
 - Hydrogen gas jet target & new low energy storage ring with cooling.
- HyperCP will come close to sensitivity proposed by P859.
 - Possible to get enough statistics to improve another order of magnitude (x100 in events).
 - No study of systematics.

Prototype Neutrino Factory

- In normal operation of the \bar{p} source, π 's as well as \bar{p} 's are captured by the Debuncher.
 - Yields prompt $\bar{\nu}_{\mu}$'s from $\pi^{-} \rightarrow \mu^{-} \bar{\nu}_{\mu}$.
 - Delayed $\bar{\nu}_{\rm e}$ and ν_{μ} from $\mu^{\text{-}} \rightarrow e^{\text{-}} \bar{\nu}_{\rm e} \nu_{\mu}$.
- This has been pointed out before.
 - -P860
 - "Test beam" proposal by John Cooper.

(From John Cooper)

Actually get "Tagged" v_{μ} and $\overline{v_e}$

NO. OF NEUTRINOS

- Muons captured in the Debuncher have to be within +- 2% of the momentum aperture, so only forward decays survive. V-A means that the muons are polarized
- Muon spin precesses in the magnetic field
 - Spin precession period ~
 20 turns
 - So there is a time separation of v_{μ} and $\overline{v_{e}}$
- THIS BEGINS TO LOOK LIKE A TEST BEAM!

Also note the FIRST turn is very dominantly from π decay (no μ 's yet)

(From John Cooper)

Debuncher Neutrino Energy Spectra

for +- 10 mrad cone forward

• Get 20 π 's for every pbar produced

This is a two body decay, so angle & Energy are correlated at your prototype detector, giving a handle on the Neutral Currents

Get 1 μ for every pbar produced

Prototype Neutrino Factory - 2

- If the antiproton source were not needed for making antiprotons...
 - Debuncher could collect 8 GeV positives.
 - Debuncher could operate at lower energy with either polarity.
 - Could collect pions made by MI protons with energy less than 120 GeV.
 - Could collect pions made by 8 GeV protons.
 - Could store muons prepared by a prototype muon source.

The End.

Backup Slides

GSI Planned Antiproton Physics Program

- Charmonium Spectroscopy. Precision measurement of masses, widths and branching ratios of all (c c) states (hydrogen atom of QCD).
- Search for gluonic excitations (hybrids, glueballs) in the charmonium mass range (3-5 GeV/c²).
- Search for modifications of meson properties in the nuclear medium, and their possible relation to the partial restoration of chiral symmetry for light quarks.
- Precision γ -ray spectroscopy of single and double hypernuclei, to extract information on their structure and on the hyperon-nucleon and hyperon-hyperon interaction.

(from Diego Bettoni)